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Introduction:  

Functional Neural Connectivity: Understanding Brain Dynamics and Implications in 

Schizophrenia 

 

 

Functional neural connectivity explores the temporal correlations between spatially distant 

neurophysiological events, revealing how different brain regions interact, coactivate and cooperate 

to support various cognitive functions and behaviors (Friston, 2011; Bassett & Sporns, 2017). This 

field has revolutionized neuroscience by providing insights into both normal brain function and 

disorders such as schizophrenia, where disruptions in connectivity play a crucial role (Fornito et 

al., 2012; Pettersson-Yeo et al., 2011). Functional neural connectivity represents a crucial aspect 

of brain function, revealing how neural circuits organize and synchronize to support cognition, 

behavior, and disease pathology. Advances in imaging technology and analytical methods continue 

to deepen our understanding of brain networks and their role in health and disease. Schizophrenia 

is characterized by disruptions in thought processes, perceptions, emotions, and behaviors. 

Research into functional neural connectivity in schizophrenia has revealed significant alterations 

in how different brain regions communicate, shedding light on the neurobiological underpinnings 

of the disorder. 

Advances in imaging technology and analytical methods continue to deepen our understanding of 

brain networks and their role in health and disease.  

Functional MRI (fMRI) is pivotal in studying functional neural connectivity. It measures changes 

in blood flow and oxygenation, offering insights into brain activity at high spatial resolution 

(Biswal et al., 1995). Resting-state fMRI (rs-fMRI) captures spontaneous fluctuations in the blood 
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oxygen level-dependent (BOLD) signal, revealing intrinsic functional networks like the default 

mode network (DMN) that are crucial for understanding brain organization (Raichle, 2015; Smith 

et al., 2009). 

The Default Mode Network (DMN) is a prominent and well-studied functional brain network that 

is active when an individual is not focused on the external environment or engaged in specific 

tasks. Instead, it becomes active during introspective thoughts, daydreaming, spontaneous 

cognition, and self-referential processing. The term "default mode" arose because initially, it was 

observed that this network was most active during rest or when the brain was not engaged in goal-

directed tasks.  

Resting-state functional MRI (rs-fMRI) has been pivotal in mapping and studying the DMN. It 

identifies synchronized fluctuations in the BOLD (Blood Oxygen Level Dependent) signal across 

DMN regions, revealing its functional connectivity dynamics. 

Alterations in DMN activity and connectivity have been implicated in various psychiatric and 

neurological conditions. For example, disruptions in the DMN are observed in disorders such as 

Alzheimer's disease, autism spectrum disorders, and schizophrenia (Buckner et al., 2008; 

Whitfield-Gabrieli & Ford, 2012). 
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Figure 1 – The fMRI scan delineating the DMN of someone remembering, thinking about the 
future. The coloured regions represent the Medial Prefrontal Cortex(mPFC), Posterior Cingulate 
Cortex (PCC) and Inferior Parietal Lobule (IPL). (Buckner et al.,2013)  

 

Extensive research has considered whether disruption of the default network may contribute to 

disease. A recent study from Whitfield-Gabrieli and colleagues35 found that patients with 

schizophrenia display a hyperactive default network and aberrant connectivity of the default 

network. (Buckner et al.,2013)  

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3811106/#ref35
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Figure 2 – The functional connectivity and the DMN of the normal network and the psychosis 
during the schizophrenia manifestation  
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As the figure 2 above demonstrates brain function and dysfunction can be examined by exploring 

how different brain networks interact. The top panel illustrates three networks that include the 

default network (red), a frontoparietal control network thought to be important to executive control 

(orange), and an external attention network hypothesized to guide attention and actions toward 

external sensory stimuli, often called the dorsal attention network (green). In the middle row, the 

circles and lines represent a graphical representation of the relationship of the brain regions 

involved in all three networks. Each circle is a brain region and the line thickness between the 

circles represents the functional correlation strength between the regions. Regions that are strongly 

functionally coupled are plotted near to one another. What emerges in normal control subjects is 

that regions within each network are tightly functionally coupled and distinct from the regions of 

the other networks. One hypothesis is that the frontoparietal control network regulates the 

interactions between the default network and external attention network. When the same analysis 

is applied to psychotic patients (n=100 including schizophrenia, schizoaffective disorder, and 

bipolar disorder with psychosis), the network interactions display an interesting difference: the 

frontoparietal control network shows a less modular structure and a less rigid boundary with the 

default network. (Buckner et al.,2013) 

Besides from the dominance of the fMRI technique to track the functional neural connectivity 

Electroencephalography (EEG) and Magnetoencephalography (MEG) provide direct 

measurements of neural electrical activity with high temporal resolution, capturing rapid changes 

in functional connectivity during different cognitive states (Hillebrand & Barnes, 2002; Gross, 

2019). These methods complement fMRI by offering insights into neural oscillations and 

synchronization across brain regions. 
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Figure 3 - Illustration of the two recording modalities. (Left top panel) dMRI recording with 
resulting fiber tracts. (Right top panel) 64-channel EEG signal with electrode layout conform the 
10–20 systematic. (Middle lower panel) EEG/dMRI combination to explore the link between 
structural and functional connectivity. (Babaeeghazvini et al.,2021)  

 

In order to understand and decipher the neural connectivity graph theory and network analysis are 

fundamental tools for quantifying and interpreting functional connectivity patterns (Bullmore & 

Sporns, 2009). These approaches treat brain regions as nodes and functional connections as edges, 

revealing the brain's complex organization in terms of network properties such as modularity and 

efficiency (Rubinov & Sporns, 2010). 

Studies using fMRI and other imaging techniques have identified aberrant functional connectivity 

patterns in schizophrenia patients compared to healthy controls. These alterations involve 
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disruptions in local and long-range connectivity, affecting networks such as the default mode 

network (DMN), front-parietal network, and salience network (van den Heuvel & Fornito, 2014; 

Whitfield-Gabrieli & Ford, 2012). 

Default Mode Network (DMN): Reduced anti-correlation between the DMN and task-positive 

networks suggests a failure to segregate internal mental processes from external stimuli, 

contributing to cognitive deficits in schizophrenia (Whitfield-Gabrieli et al., 2009). 

Fronto-Parietal Network: Dysfunctional connectivity within this network is associated with 

impairments in cognitive control and working memory, core features of schizophrenia (Repovs & 

Barch, 2012).Altered functional connectivity in schizophrenia correlates with symptom severity 

and cognitive impairments. Deficits in social cognition and auditory hallucinations are linked to 

disrupted connectivity within the auditory and language processing networks (Woodward et al., 

2011; Shinn et al., 2013). Additionally, impaired connectivity between the prefrontal cortex and 

limbic system contributes to emotional dysregulation and negative symptoms (Anticevic et al., 

2015). Longitudinal studies have highlighted developmental trajectories of functional connectivity 

abnormalities in schizophrenia. Early-stage schizophrenia shows subtle connectivity alterations 

that become more pronounced with disease progression (Alexander-Bloch et al., 2013). These 

findings underscore the dynamic nature of neural connectivity disruptions and their implications 

for early intervention strategies. 

Advances in connectivity-based biomarkers hold promise for improving diagnostic accuracy and 

predicting treatment outcomes in schizophrenia (Crossley et al., 2017). Targeted interventions such 

as neuromodulation techniques (e.g., TMS) and cognitive remediation therapies aim to normalize 

aberrant connectivity patterns and alleviate symptoms (Lefaucheur et al., 2017; Wykes et al., 

2011). 
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Practical Neural Connectivity Functional Analysis using Python  

 

Data Acquisition Summary  

 

The original study (Elena et al.,2012) where the data was adopted utilized resting-state scans from 

405 healthy participants, with an average age of 21.0 years (ranging from 12 to 35 years) and a 

majority of 200 female participants. These scans were gathered from 34 different studies conducted 

by 18 principal investigators at the Mind Research Network. Prior to analysis, all participants 

provided informed consent in accordance with University of New Mexico guidelines, and their 

data were anonymized. This dataset represents a subset of a larger cohort used in a previous study 

(Allen et al., 2011), with stricter inclusion criteria applied to minimize the impact of motion and 

spatial normalization issues, and to enhance sample homogeneity by excluding participants over 

35 years old. 

Imaging was performed using a 3-T Siemens Trio scanner equipped with a 12-channel radio 

frequency coil. Functional images were acquired using a T2*-weighted gradient-echo EPI 

sequence with specific parameters: TE = 29 ms, TR = 2 s, flip angle = 75°, slice thickness = 3.5 

mm, slice gap = 1.05 mm, field of view = 240 mm, matrix size = 64 × 64, and voxel size = 3.75 

mm × 3.75 mm × 4.55 mm. Each resting-state scan lasted at least 5 minutes and 4 seconds (152 

volumes), with any excess volumes discarded to ensure consistency across participants. During 

the scans, participants were instructed to keep their eyes open and focus on a centrally presented 

cross. 
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Data preprocessing was conducted using an automated pipeline centered around SPM 5 software. 

This included removing the first 4 image volumes to account for T1 equilibration effects, 

realigning images to correct for motion using INRIalign, correcting for slice timing using the 

middle slice as a reference, normalizing images into Montreal Neurological Institute space, 

reslicing to 3 mm × 3 mm × 3 mm voxels, and applying Gaussian smoothing (FWHM = 5 mm). 

Voxel time series were z-scored to standardize variance across space, minimizing potential biases 

in subsequent data analysis steps. The choice of variance normalization aimed to prioritize 

temporal modulation over amplitude differences, aligning with the study's research focus. 

Following preprocessing, data underwent group-level spatial Independent Component Analysis 

(ICA) using the GIFT toolbox. A high model order (C = 100 components) was selected to achieve 

a detailed functional parcellation of cortical and subcortical components, aligned with established 

anatomical and functional segmentations. Subject-specific data reduction via Principal Component 

Analysis (PCA) retained 120 principal components, while group data reduction retained C = 100 

principal components using the EM algorithm to manage computational demands. 

To identify intrinsic connectivity networks (ICNs) from the ICA results, component time courses 

underwent further postprocessing. This involved removing residual noise sources such as low-

frequency scanner drifts, motion-related variance not captured in distinct components due to 

spatial nonstationarity, and other nonspecific noise artifacts. Postprocessing techniques included 

detrending to remove linear, quadratic, and cubic trends, regression of motion parameters and their 

derivatives, outlier detection and removal, and low pass filtering with a cutoff frequency of 0.15 

Hz. 
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Data Preprocessing Before training  

 

The collected data was then classified and separated based on the diagnosis of schizophrenia. Two 

sets of data with 379 features (including the ID of the study participants) were prepared.  

 

Autoencoder Philosophy  

 

 

An autoencoder is a type of artificial neural network used for unsupervised learning of efficient 

data representations. It aims to learn a compressed, lower-dimensional representation of the input 

data, typically for the purpose of dimensionality reduction, denoising, or feature learning. 
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 Key Components of an Autoencoder: 

 

1.Encoder: The encoder transforms the input data into a compressed representation, often referred 

to as the latent space or encoding. It consists of one or more layers of neurons that progressively 

reduce the input into a lower-dimensional representation. 

2.Decoder: The decoder reconstructs the input data from the compressed representation produced 

by the encoder. It mirrors the encoder architecture but in reverse, expanding the latent space 

representation back into the original dimensionality. 

3. Objective: The primary objective of training an autoencoder is to minimize the reconstruction 

error between the input data and the output data reconstructed by the decoder. Commonly used 

loss functions include mean squared error (MSE) or binary cross-entropy, depending on the nature 

of the input data. 

Types of Autoencoders: 

 

-Basic Autoencoder: The standard autoencoder described above, which learns a general-purpose 

representation of the input data. 

- Sparse Autoencoder: Introduces sparsity constraints to the hidden layers, encouraging the model 

to learn sparse representations, where most of the neurons are inactive. 

- Variational Autoencoder (VAE): Extends the basic autoencoder to learn a probabilistic latent 

space. VAEs are trained to approximate the true posterior distribution of the latent variables, 

enabling generation of new data points like those in the training data. 
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- Denoising Autoencoder: Trains the model to reconstruct the original input from a corrupted or 

noisy version of the input. It encourages the autoencoder to learn robust features that are resilient 

to noise. 

- Contractive Autoencoder: Adds a regularization term to the loss function that penalizes the 

derivative of the encoder's output with respect to its input. This encourages the model to learn 

stable representations that are insensitive to small variations in the input data. 

Applications of Autoencoders: 

 

- Dimensionality Reduction: Learning a compact representation of high-dimensional data while 

preserving important features. 

- Image and Signal Compression: Efficiently compressing images or signals while retaining 

important information. 

- Feature Learning: Discovering meaningful features or representations from raw data, which can 

then be used as inputs for other machine learning models. 

- Anomaly Detection: Autoencoders can reconstruct normal data well, making them effective for 

detecting anomalies or outliers that do not conform to learned patterns. 

- Data Generation: Variational autoencoders can generate new data samples like those in the 

training data by sampling from the learned latent space. 
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In Practice  

 

Healthy Population Analysis  

 

The initial model started as a deep autoencoder in which it used 3 layers as encoder and 3 

symmetric layers as decoder along with the latent space and representation through one layer. 

Although the input layer dimension was the number of the FNC nodes as 378, the bottleneck of 

the latent space was induced through the compressed dimension of 16. Regularization to avoid 

overfitting was done through the “drop out” strategy. 

 

 

The latent space of the model assumes to contain the most meaningful and relevant features of the 

functional connectivity. This latent representation of the input neural functional connectivity got 

extracted through embeddings. 
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Where in the extractor, the layer 3 represents the position of the hidden latent layer. The 

hierarchical unsupervised clustering on embeddings of the latent representation of the original 

dataset revealed 46 clusters.  

 

Figure 4 – The dendrogram and hierarchical clustering of the latent representation of the original 
functional neural connectivity. Total number of 46 clusters were identified. 
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Figure 5 – The two-dimensional representation of the latent space by t-Distributed Stochastic 
Neighbour Embedding (t-SNE) 

 

Applying the fundamental concepts of the graph theory, if each individual functional neural 

connectivity represents a node in the graph representation, the wedges inevitably will represent the 

connectivity and the way that each node are co-connected or coactivated during the resting state. 

This connectivity through wedges of a graph revealed the pattern as below: 
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Figure 7 – The connectivity pattern between the clusters of the embeddings represented the latent 
space 

 

However, quite surprisingly, this pattern of connectivity showed sensitivity to the training model 

parameters adopted. In the second model trained on the functional connectivity of the healthy 
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cohort, the same architecture of the deep autoencoder was applied however, the optimizer and its 

effective learning rate for convergence was changed. 
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Figure 7 – The connectivity pattern of the nodes of functional neural connectivity with the different 

optimiser RMSprop used in the autoencoder training on the latent representation of the input data. 

This is markedly different than the first model where the optimizer adopted was ADAM. 

Schizophrenic Cohorts  

 

In order to be consistent with the healthy cohort analysis, the same deep autoencoder architecture 

was applied to the preprocessed data obtained from (…) for the schizophrenic cohorts. The datasets 

before feeding into the neural network was normalized.  



Page 21 of 34 
 

The deep autoencoder model with its hyperparameters was trained as below for 50 epoch and the 

loss was visualized. 

 

And the information encapsulated in the latent space was extracted as previously done for the 

healthy cohort. 

 

The number of the clusters form the inputs of the functional neural connectivity was consistent as 

the healthy cohorts, 46 but the pattern of connectivity showed variation as will be discussed. The 

unsupervised hierarchical clustering shows the details as below: 
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Figure 9 – The dendrogram of the FNC of the patients diagnosed with schizophrenia 
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Figure 10 – The visualization of the clustering from the FNC by the t-SNE method  

The graph representation of the pattern of the connectivity between the clusters of the functional 

neural connectivity crunched into the 2D plane by the t-distributed stochastic neighbor embedding 

reveals the pattern of the static connectivity during the resting state as: 
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Figure 11 – t-SNE visualization of the graph for the connectivity pattern of the FNC of the 
patients with schizophrenia collected from fMRI scan during resting state. 

 

However, as it was observed with the healthy cohort, this pattern of connectivity was sensitive to 

the model hyperparameters, such as the optimizers and learning rate. To preserve the consistency 

with the healthy cohort analysis, the data from the schizophrenic cohort was run by the second 

deep autoencoder with different hyperparameter. 
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Although the number of the clusters were the same as 46, the pattern of connectivity was different  
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Figure 11 – The connectivity pattern during the resting state of the clusters of the FNC for the 
schizophrenic cohort where the hyperparameters were changed. 

 

As it was observed the deep autoencoder model and the extracted pattern of the latent space 

revealed different connectivity pattern between the clusters of the functional neural network. This 

connectivity pattern also was subject to variation due to changes of the training model 

hyperparameters. As we changed the optimizers from ADAM to RMSprop with different learning 

rate that model converged faster, the pattern of the connectivity changed. This can heuristically 

imply that the pattern observed from the more robust training model is the one that will be more 

reliable for downstream analysis. In the next step, the probabilistic version of the deep autoencoder, 
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variational autoencoder is used in order to provide a probabilistic inference on the nature of the 

functional neural connectivity. 

Variational Autoencoder Philosophy & Application  

 

variational autoencoders extend traditional autoencoders by introducing probabilistic modeling of 

the latent space. They are powerful tools for learning complex data distributions and generating 

new data samples, making them widely used in modern machine learning for tasks involving 

generative modeling and unsupervised learning. 

Key Concepts of Variational Autoencoders: 

 

1.Probabilistic Latent Space: Unlike traditional autoencoders, which learn deterministic mappings 

from input to latent space, VAEs learn a probabilistic mapping. This means that instead of learning 

a single point in the latent space for each input, VAEs learn a probability distribution over the latent 

variables. 

2. Encoder (Recognition Model): The encoder in a VAE maps the input data to a distribution in the 

latent space. Specifically, it outputs parameters (mean and variance) of a multivariate Gaussian 

distribution that represents the latent variables. 

3. Reparameterization Trick: To enable backpropagation and efficient gradient-based optimization, 

VAEs use a reparameterization trick during training. Instead of sampling directly from the inferred 

Gaussian distribution, the model samples from a standard Gaussian distribution and then scales 

and shifts the samples using the inferred mean and variance from the encoder. 
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4. Decoder (Generative Model): The decoder in a VAE takes samples from the latent space (which 

are drawn from the distribution output by the encoder) and reconstructs the original input data. 

This allows the model to generate new samples from the learned data distribution. 

5. Objective Function: VAEs are trained to maximize the evidence lower bound (ELBO), which 

consists of two parts: 

   - Reconstruction Loss: Measures how well the reconstructed output matches the original input. 

It is typically a measure like mean squared error (MSE) for continuous data or binary cross-entropy 

for binary data. 

   - KL Divergence: Penalizes the divergence between the learned latent distribution and a prior 

distribution (usually a standard Gaussian). This encourages the latent space to be well-structured 

and smooth. 

 

Advantages of Variational Autoencoders: 

 

 

- Generative Modeling: VAEs can generate new data points by sampling from the latent space, 

allowing them to create new data that resembles the training data distribution. 

- Continuous Latent Space: The latent space learned by VAEs tends to have a continuous and 

smooth structure, making them suitable for tasks like interpolation and exploration of latent 

representations. 
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- Regularization: The KL divergence term in the loss function acts as a regularizer, preventing 

overfitting and encouraging the model to learn meaningful latent representations. 

Applications of Variational Autoencoders: 

 

- Image Generation: VAEs can generate realistic images from learned latent representations, useful 

in tasks like image inpainting and data augmentation. 

- Anomaly Detection: By reconstructing data and measuring reconstruction error, VAEs can 

identify anomalies or outliers that do not fit well into the learned data distribution. 

- Representation Learning: VAEs learn compact and meaningful representations of data, which can 

be used as inputs for downstream tasks such as classification or clustering 

Variational Autoencoders in action 

 

To analyse the network connectivity from the preprocessed data from the resting state fMRI with 

the probabilistic version of the autoencoders, the following libraries were installed: 

 

However, the hyperparameters of the model , for the dimension of the latent representation of the 

input as the functional connectivity was set as: 
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As the latent representation of the input is represented by a probability distribution of multivariate 

normal distribution the following parameters were set accordingly to express the mean and 

dispersion of the distribution. 

 

However, the stochastic sampling of the latent space for the posterior distribution was  

 

The encoder representation through the representation of the input features produced the following 

metrics. 
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One of the amin differences of the variational autoencoders are the specificity of the loss function 

that is designed as a factor for the minimization to optimally train the model. The loss function is 

composed of tow part , the fist one is the one that conventionally measures in the Euclidean space 

the difference between the target and the input and the other one is more conventional with respect 

to the Bayesian methods where the difference between the distribution is more highlighted through 

the divergence as Kulback -Liebler metric where it measures the divergence between pairwise 

distribution. 
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As the code above demonstrates the model with that custom loss function was trained. The 

variational autoencoder as well produced the same connectivity network as its non probabilistic 

counterpart, deep autoencoder. 

 

Conclusion  

 

In this brief review, the functional neural connectivity from the resting state between healthy and 

schizophrenic patients were analysed with both deep autoencoder and variational autoencoder. It 

was demonstrated through the graph analysis that the pattern of the connectivity between these 

two subjects were drastically different. Although of higher importance, this pattern was shown to 

be sensitive to the hyperparameters of the model when extracted the embedding from the latent 

representation of the resting state functional neural connectivity. Further analysis is required to 

obliterate this sensitivity. 
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